Concurrency¶
Execute a shell command¶
# get stdout, stderr, returncode
>>> from subprocess import Popen, PIPE
>>> args = ['time', 'echo', 'hello python']
>>> ret = Popen(args, stdout=PIPE, stderr=PIPE)
>>> out, err = ret.communicate()
>>> out
b'hello python\n'
>>> err
b' 0.00 real 0.00 user 0.00 sys\n'
>>> ret.returncode
0
Create a thread via “threading”¶
>>> from threading import Thread
>>> class Worker(Thread):
... def __init__(self, id):
... super(Worker, self).__init__()
... self._id = id
... def run(self):
... print("I am worker %d" % self._id)
...
>>> t1 = Worker(1)
>>> t2 = Worker(2)
>>> t1.start(); t2.start()
I am worker 1
I am worker 2
# using function could be more flexible
>>> def Worker(worker_id):
... print("I am worker %d" % worker_id)
...
>>> from threading import Thread
>>> t1 = Thread(target=Worker, args=(1,))
>>> t2 = Thread(target=Worker, args=(2,))
>>> t1.start()
I am worker 1
I am worker 2
Performance Problem - GIL¶
# GIL - Global Interpreter Lock
# see: Understanding the Python GIL
>>> from threading import Thread
>>> def profile(func):
... def wrapper(*args, **kwargs):
... import time
... start = time.time()
... func(*args, **kwargs)
... end = time.time()
... print(end - start)
... return wrapper
...
>>> @profile
... def nothread():
... fib(35)
... fib(35)
...
>>> @profile
... def hasthread():
... t1=Thread(target=fib, args=(35,))
... t2=Thread(target=fib, args=(35,))
... t1.start(); t2.start()
... t1.join(); t2.join()
...
>>> nothread()
9.51164007187
>>> hasthread()
11.3131771088
# !Thread get bad Performance
# since cost on context switch
Consumer and Producer¶
# This architecture make concurrency easy
>>> from threading import Thread
>>> from Queue import Queue
>>> from random import random
>>> import time
>>> q = Queue()
>>> def fib(n):
... if n<=2:
... return 1
... return fib(n-1)+fib(n-2)
...
>>> def producer():
... while True:
... wt = random()*5
... time.sleep(wt)
... q.put((fib,35))
...
>>> def consumer():
... while True:
... task,arg = q.get()
... print(task(arg))
... q.task_done()
...
>>> t1 = Thread(target=producer)
>>> t2 = Thread(target=consumer)
>>> t1.start();t2.start()
Thread Pool Template¶
# producer and consumer architecture
from Queue import Queue
from threading import Thread
class Worker(Thread):
def __init__(self,queue):
super(Worker, self).__init__()
self._q = queue
self.daemon = True
self.start()
def run(self):
while True:
f,args,kwargs = self._q.get()
try:
print(f(*args, **kwargs))
except Exception as e:
print(e)
self._q.task_done()
class ThreadPool(object):
def __init__(self, num_t=5):
self._q = Queue(num_t)
# Create Worker Thread
for _ in range(num_t):
Worker(self._q)
def add_task(self,f,*args,**kwargs):
self._q.put((f, args, kwargs))
def wait_complete(self):
self._q.join()
def fib(n):
if n <= 2:
return 1
return fib(n-1)+fib(n-2)
if __name__ == '__main__':
pool = ThreadPool()
for _ in range(3):
pool.add_task(fib,35)
pool.wait_complete()
Using multiprocessing ThreadPool¶
# ThreadPool is not in python doc
>>> from multiprocessing.pool import ThreadPool
>>> pool = ThreadPool(5)
>>> pool.map(lambda x: x**2, range(5))
[0, 1, 4, 9, 16]
Compare with “map” performance
# pool will get bad result since GIL
import time
from multiprocessing.pool import \
ThreadPool
pool = ThreadPool(10)
def profile(func):
def wrapper(*args, **kwargs):
print(func.__name__)
s = time.time()
func(*args, **kwargs)
e = time.time()
print("cost: {0}".format(e-s))
return wrapper
@profile
def pool_map():
res = pool.map(lambda x:x**2,
range(999999))
@profile
def ordinary_map():
res = map(lambda x:x**2,
range(999999))
pool_map()
ordinary_map()
output:
$ python test_threadpool.py
pool_map
cost: 0.562669038773
ordinary_map
cost: 0.38525390625
Mutex lock¶
Simplest synchronization primitive lock
>>> from threading import Thread
>>> from threading import Lock
>>> lock = Lock()
>>> def getlock(id):
... lock.acquire()
... print("task{0} get".format(id))
... lock.release()
...
>>> t1=Thread(target=getlock,args=(1,))
>>> t2=Thread(target=getlock,args=(2,))
>>> t1.start();t2.start()
task1 get
task2 get
# using lock manager
>>> def getlock(id):
... with lock:
... print("task%d get" % id)
...
>>> t1=Thread(target=getlock,args=(1,))
>>> t2=Thread(target=getlock,args=(2,))
>>> t1.start();t2.start()
task1 get
task2 get
Deadlock¶
Happen when more than one mutex lock.
>>> import threading
>>> import time
>>> lock1 = threading.Lock()
>>> lock2 = threading.Lock()
>>> def task1():
... with lock1:
... print("get lock1")
... time.sleep(3)
... with lock2:
... print("No deadlock")
...
>>> def task2():
... with lock2:
... print("get lock2")
... with lock1:
... print("No deadlock")
...
>>> t1=threading.Thread(target=task1)
>>> t2=threading.Thread(target=task2)
>>> t1.start();t2.start()
get lock1
get lock2
>>> t1.isAlive()
True
>>> t2.isAlive()
True
Implement “Monitor”¶
Using RLock
# ref: An introduction to Python Concurrency - David Beazley
from threading import Thread
from threading import RLock
import time
class monitor(object):
lock = RLock()
def foo(self,tid):
with monitor.lock:
print("%d in foo" % tid)
time.sleep(5)
self.ker(tid)
def ker(self,tid):
with monitor.lock:
print("%d in ker" % tid)
m = monitor()
def task1(id):
m.foo(id)
def task2(id):
m.ker(id)
t1 = Thread(target=task1,args=(1,))
t2 = Thread(target=task2,args=(2,))
t1.start()
t2.start()
t1.join()
t2.join()
output:
$ python monitor.py
1 in foo
1 in ker
2 in ker
Control primitive resources¶
Using Semaphore
from threading import Thread
from threading import Semaphore
from random import random
import time
# limit resource to 3
sema = Semaphore(3)
def foo(tid):
with sema:
print("%d acquire sema" % tid)
wt = random()*5
time.sleep(wt)
print("%d release sema" % tid)
threads = []
for _t in range(5):
t = Thread(target=foo,args=(_t,))
threads.append(t)
t.start()
for _t in threads:
_t.join()
output:
python semaphore.py
0 acquire sema
1 acquire sema
2 acquire sema
0 release sema
3 acquire sema
2 release sema
4 acquire sema
1 release sema
4 release sema
3 release sema
Ensure tasks has done¶
Using ‘event’
from threading import Thread
from threading import Event
import time
e = Event()
def worker(id):
print("%d wait event" % id)
e.wait()
print("%d get event set" % id)
t1=Thread(target=worker,args=(1,))
t2=Thread(target=worker,args=(2,))
t3=Thread(target=worker,args=(3,))
t1.start()
t2.start()
t3.start()
# wait sleep task(event) happen
time.sleep(3)
e.set()
output:
python event.py
1 wait event
2 wait event
3 wait event
2 get event set
3 get event set
1 get event set
Thread-safe priority queue¶
Using ‘condition’
import threading
import heapq
import time
import random
class PriorityQueue(object):
def __init__(self):
self._q = []
self._count = 0
self._cv = threading.Condition()
def __str__(self):
return str(self._q)
def __repr__(self):
return self._q
def put(self, item, priority):
with self._cv:
heapq.heappush(self._q, (-priority,self._count,item))
self._count += 1
self._cv.notify()
def pop(self):
with self._cv:
while len(self._q) == 0:
print("wait...")
self._cv.wait()
ret = heapq.heappop(self._q)[-1]
return ret
priq = PriorityQueue()
def producer():
while True:
print(priq.pop())
def consumer():
while True:
time.sleep(3)
print("consumer put value")
priority = random.random()
priq.put(priority,priority*10)
for _ in range(3):
priority = random.random()
priq.put(priority,priority*10)
t1=threading.Thread(target=producer)
t2=threading.Thread(target=consumer)
t1.start();t2.start()
t1.join();t2.join()
output:
python3 thread_safe.py
0.6657491871045683
0.5278797439991247
0.20990624606296315
wait...
consumer put value
0.09123101305407577
wait...
Multiprocessing¶
Solving GIL problem via processes
>>> from multiprocessing import Pool
>>> def fib(n):
... if n <= 2:
... return 1
... return fib(n-1) + fib(n-2)
...
>>> def profile(func):
... def wrapper(*args, **kwargs):
... import time
... start = time.time()
... func(*args, **kwargs)
... end = time.time()
... print(end - start)
... return wrapper
...
>>> @profile
... def nomultiprocess():
... map(fib,[35]*5)
...
>>> @profile
... def hasmultiprocess():
... pool = Pool(5)
... pool.map(fib,[35]*5)
...
>>> nomultiprocess()
23.8454811573
>>> hasmultiprocess()
13.2433719635
Custom multiprocessing map¶
from multiprocessing import Process, Pipe
from itertools import izip
def spawn(f):
def fun(pipe,x):
pipe.send(f(x))
pipe.close()
return fun
def parmap(f,X):
pipe=[Pipe() for x in X]
proc=[Process(target=spawn(f),
args=(c,x))
for x,(p,c) in izip(X,pipe)]
[p.start() for p in proc]
[p.join() for p in proc]
return [p.recv() for (p,c) in pipe]
print(parmap(lambda x:x**x,range(1,5)))
Graceful way to kill all child processes¶
from __future__ import print_function
import signal
import os
import time
from multiprocessing import Process, Pipe
NUM_PROCESS = 10
def aurora(n):
while True:
time.sleep(n)
if __name__ == "__main__":
procs = [Process(target=aurora, args=(x,))
for x in range(NUM_PROCESS)]
try:
for p in procs:
p.daemon = True
p.start()
[p.join() for p in procs]
finally:
for p in procs:
if not p.is_alive(): continue
os.kill(p.pid, signal.SIGKILL)
Simple round-robin scheduler¶
>>> def fib(n):
... if n <= 2:
... return 1
... return fib(n-1)+fib(n-2)
...
>>> def gen_fib(n):
... for _ in range(1,n+1):
... yield fib(_)
...
>>> t=[gen_fib(5),gen_fib(3)]
>>> from collections import deque
>>> tasks = deque()
>>> tasks.extend(t)
>>> def run(tasks):
... while tasks:
... try:
... task = tasks.popleft()
... print(task.next())
... tasks.append(task)
... except StopIteration:
... print("done")
...
>>> run(tasks)
1
1
1
1
2
2
3
done
5
done
Scheduler with blocking function¶
# ref: PyCon 2015 - David Beazley
import socket
from select import select
from collections import deque
tasks = deque()
r_wait = {}
s_wait = {}
def fib(n):
if n <= 2:
return 1
return fib(n-1)+fib(n-2)
def run():
while any([tasks,r_wait,s_wait]):
while not tasks:
# polling
rr, sr, _ = select(r_wait, s_wait, {})
for _ in rr:
tasks.append(r_wait.pop(_))
for _ in sr:
tasks.append(s_wait.pop(_))
try:
task = tasks.popleft()
why, what = task.next()
if why == 'recv':
r_wait[what] = task
elif why == 'send':
s_wait[what] = task
else:
raise RuntimeError
except StopIteration:
pass
def fib_server():
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(('localhost',5566))
sock.listen(5)
while True:
yield 'recv', sock
c, a = sock.accept()
tasks.append(fib_handler(c))
def fib_handler(client):
while True:
yield 'recv', client
req = client.recv(1024)
if not req:
break
resp = fib(int(req))
yield 'send', client
client.send(str(resp)+'\n')
client.close()
tasks.append(fib_server())
run()
output: (bash 1)
$ nc loalhost 5566
20
6765
output: (bash 2)
$ nc localhost 5566
10
55
PoolExecutor¶
# python2.x is module futures on PyPI
# new in Python3.2
>>> from concurrent.futures import \
... ThreadPoolExecutor
>>> def fib(n):
... if n<=2:
... return 1
... return fib(n-1) + fib(n-2)
...
>>> with ThreadPoolExecutor(3) as e:
... res= e.map(fib,[1,2,3,4,5])
... for _ in res:
... print(_, end=' ')
...
1 1 2 3 5 >>>
# result is generator?!
>>> with ThreadPoolExecutor(3) as e:
... res = e.map(fib, [1,2,3])
... inspect.isgenerator(res)
...
True
# demo GIL
from concurrent import futures
import time
def fib(n):
if n <= 2:
return 1
return fib(n-1) + fib(n-2)
def thread():
s = time.time()
with futures.ThreadPoolExecutor(2) as e:
res = e.map(fib, [35]*2)
for _ in res:
print(_)
e = time.time()
print("thread cost: {}".format(e-s))
def process():
s = time.time()
with futures.ProcessPoolExecutor(2) as e:
res = e.map(fib, [35]*2)
for _ in res:
print(_)
e = time.time()
print("pocess cost: {}".format(e-s))
# bash> python3 -i test.py
>>> thread()
9227465
9227465
thread cost: 12.550225019454956
>>> process()
9227465
9227465
pocess cost: 5.538189888000488
How to use ThreadPoolExecutor
?¶
from concurrent.futures import ThreadPoolExecutor
def fib(n):
if n <= 2:
return 1
return fib(n - 1) + fib(n - 2)
with ThreadPoolExecutor(max_workers=3) as ex:
futs = []
for x in range(3):
futs.append(ex.submit(fib, 30+x))
res = [fut.result() for fut in futs]
print(res)
output:
$ python3 thread_pool_ex.py
[832040, 1346269, 2178309]
What does “with ThreadPoolExecutor” work?¶
from concurrent import futures
def fib(n):
if n <= 2:
return 1
return fib(n-1) + fib(n-2)
with futures.ThreadPoolExecutor(3) as e:
fut = e.submit(fib, 30)
res = fut.result()
print(res)
# equal to
e = futures.ThreadPoolExecutor(3)
fut = e.submit(fib, 30)
fut.result()
e.shutdown(wait=True)
print(res)
output:
$ python3 thread_pool_exec.py
832040
832040
Future Object¶
# future: deferred computation
# add_done_callback
from concurrent import futures
def fib(n):
if n <= 2:
return 1
return fib(n-1) + fib(n-2)
def handler(future):
res = future.result()
print("res: {}".format(res))
def thread_v1():
with futures.ThreadPoolExecutor(3) as e:
for _ in range(3):
f = e.submit(fib, 30+_)
f.add_done_callback(handler)
print("end")
def thread_v2():
to_do = []
with futures.ThreadPoolExecutor(3) as e:
for _ in range(3):
fut = e.submit(fib, 30+_)
to_do.append(fut)
for _f in futures.as_completed(to_do):
res = _f.result()
print("res: {}".format(res))
print("end")
output:
$ python3 -i fut.py
>>> thread_v1()
res: 832040
res: 1346269
res: 2178309
end
>>> thread_v2()
res: 832040
res: 1346269
res: 2178309
end
Future error handling¶
from concurrent import futures
def spam():
raise RuntimeError
def handler(future):
print("callback handler")
try:
res = future.result()
except RuntimeError:
print("get RuntimeError")
def thread_spam():
with futures.ThreadPoolExecutor(2) as e:
f = e.submit(spam)
f.add_done_callback(handler)
output:
$ python -i fut_err.py
>>> thread_spam()
callback handler
get RuntimeError