Python Interpreter in GNU Debugger¶
Abstract¶
The GNU Debugger (GDB) is the most powerful debugging tool for developers to
troubleshoot errors in their code. However, it is hard for beginners to learn,
and that is why many programmers prefer to insert print
to examine runtime
status. Fortunately, GDB Text User Interface (TUI) provides a way for
developers to review their source code and debug simultaneously. More
excitingly, In GDB 7, Python Interpreter was built into GDB. This feature
offers more straightforward ways to customize GDB printers and commands through
the Python library. By discussing examples, this article tries to explore
advanced debugging techniques via Python to develop tool kits for GDB.
Introduction¶
Troubleshooting software bugs is a big challenge for developers. While GDB provides many “debug commands” to inspect programs’ runtime status, its non-intuitive usages impede programmers to use it to solve problems. Indeed, mastering GDB is a long-term process. However, a quick start is not complicated; you must unlearn what you have learned like Yoda. To better understand how to use Python in GDB, this article will focus on discussing Python interpreter in GDB.
Define Commands¶
GDB supports customizing commands by using define
. It is useful to run a
batch of commands to troubleshoot at the same time. For example, a developer
can display the current frame information by defining a sf
command.
# define in .gdbinit
define sf
where # find out where the program is
info args # show arguments
info locals # show local variables
end
However, writing a user-defined command may be inconvenient due to limited APIs. Fortunately, by interacting with Python interpreter in GDB, developers can utilize Python libraries to establish their debugging tool kits readily. The following sections show how to use Python to simplify debugging processes.
Dump Memory¶
Inspecting a process’s memory information is an effective way to troubleshoot
memory issues. Developers can acquire memory contents by info proc mappings
and dump memory
. To simplify these steps, defining a customized command is
useful. However, the implementation is not straightforward by using pure GDB
syntax. Even though GDB supports conditions, processing output is not intuitive.
To solve this problem, using Python API in GDB would be helpful because Python
contains many useful operations for handling strings.
# mem.py
import gdb
import time
import re
class DumpMemory(gdb.Command):
"""Dump memory info into a file."""
def __init__(self):
super().__init__("dm", gdb.COMMAND_USER)
def get_addr(self, p, tty):
"""Get memory addresses."""
cmd = "info proc mappings"
out = gdb.execute(cmd, tty, True)
addrs = []
for l in out.split("\n"):
if re.match(f".*{p}*", l):
s, e, *_ = l.split()
addrs.append((s, e))
return addrs
def dump(self, addrs):
"""Dump memory result."""
if not addrs:
return
for s, e in addrs:
f = int(time.time() * 1000)
gdb.execute(f"dump memory {f}.bin {s} {e}")
def invoke(self, args, tty):
try:
# cat /proc/self/maps
addrs = self.get_addr(args, tty)
# dump memory
self.dump(addrs)
except Exception as e:
print("Usage: dm [pattern]")
DumpMemory()
Running the dm
command will invoke DumpMemory.invoke
. By sourcing
or implementing Python scripts in .gdbinit, developers can utilize
user-defined commands to trace bugs when a program is running. For example, the
following steps show how to invoke DumpMemory
in GDB.
(gdb) start
...
(gdb) source mem.py # source commands
(gdb) dm stack # dump stack to ${timestamp}.bin
(gdb) shell ls # ls current dir
1577283091687.bin a.cpp a.out mem.py
Dump JSON¶
Parsing JSON is helpful when a developer is inspecting a JSON string in a
running program. GDB can parse a std::string
via gdb.parse_and_eval
and return it as a gdb.Value
. By processing gdb.Value
, developers can
pass a JSON string into Python json
API and print it in a pretty format.
# dj.py
import gdb
import re
import json
class DumpJson(gdb.Command):
"""Dump std::string as a styled JSON."""
def __init__(self):
super().__init__("dj", gdb.COMMAND_USER)
def get_json(self, args):
"""Parse std::string to JSON string."""
ret = gdb.parse_and_eval(args)
typ = str(ret.type)
if re.match("^std::.*::string", typ):
return json.loads(str(ret))
return None
def invoke(self, args, tty):
try:
# string to json string
s = self.get_json(args)
# json string to object
o = json.loads(s)
print(json.dumps(o, indent=2))
except Exception as e:
print(f"Parse json error! {args}")
DumpJson()
The command dj
displays a more readable JSON format in GDB. This command
helps improve visual recognization when a JSON string large. Also, by using
this command, it can detect or monitor whether a std::string
is JSON or
not.
(gdb) start
(gdb) list
1 #include <string>
2
3 int main(int argc, char *argv[])
4 {
5 std::string json = R"({"foo": "FOO","bar": "BAR"})";
6 return 0;
7 }
...
(gdb) ptype json
type = std::string
(gdb) p json
$1 = "{\"foo\": \"FOO\",\"bar\": \"BAR\"}"
(gdb) source dj.py
(gdb) dj json
{
"foo": "FOO",
"bar": "BAR"
}
Highlight Syntax¶
Syntax highlighting is useful for developers to trace source code or to
troubleshoot issues. By using Pygments, applying color to the source is easy
without defining ANSI escape code manually. The following example shows how to
apply color to the list
command output.
import gdb
from pygments import highlight
from pygments.lexers import CLexer
from pygments.formatters import TerminalFormatter
class PrettyList(gdb.Command):
"""Print source code with color."""
def __init__(self):
super().__init__("pl", gdb.COMMAND_USER)
self.lex = CLexer()
self.fmt = TerminalFormatter()
def invoke(self, args, tty):
try:
out = gdb.execute(f"l {args}", tty, True)
print(highlight(out, self.lex, self.fmt))
except Exception as e:
print(e)
PrettyList()
Tracepoints¶
Although a developer can insert printf
, std::cout
, or syslog
to
inspect functions, printing messages is not an effective way to debug when a
project is enormous. Developers may waste their time in building source code
and may acquire little information. Even worse, the output may become too much
to detect problems. In fact, inspecting functions or variables do not require
to embed print functions in code. By writing a Python script with GDB API,
developers can customize watchpoints to trace issues dynamically at runtime.
For example, by implementing a gdb.Breakpoint
and a gdb.Command
, it is
useful for developers to acquire essential information, such as parameters,
call stacks, or memory usage.
# tp.py
import gdb
tp = {}
class Tracepoint(gdb.Breakpoint):
def __init__(self, *args):
super().__init__(*args)
self.silent = True
self.count = 0
def stop(self):
self.count += 1
frame = gdb.newest_frame()
block = frame.block()
sym_and_line = frame.find_sal()
framename = frame.name()
filename = sym_and_line.symtab.filename
line = sym_and_line.line
# show tracepoint info
print(f"{framename} @ {filename}:{line}")
# show args and vars
for s in block:
if not s.is_argument and not s.is_variable:
continue
typ = s.type
val = s.value(frame)
size = typ.sizeof
name = s.name
print(f"\t{name}({typ}: {val}) [{size}]")
# do not stop at tracepoint
return False
class SetTracepoint(gdb.Command):
def __init__(self):
super().__init__("tp", gdb.COMMAND_USER)
def invoke(self, args, tty):
try:
global tp
tp[args] = Tracepoint(args)
except Exception as e:
print(e)
def finish(event):
for t, p in tp.items():
c = p.count
print(f"Tracepoint '{t}' Count: {c}")
gdb.events.exited.connect(finish)
SetTracepoint()
Instead of inserting std::cout
at the beginning of functions, using a
tracepoint at a function’s entry point provides useful information to inspect
arguments, variables, and stacks. For instance, by setting a tracepoint at
fib
, it is helpful to examine memory usage, stack, and the number of calls.
int fib(int n)
{
if (n < 2) {
return 1;
}
return fib(n-1) + fib(n-2);
}
int main(int argc, char *argv[])
{
fib(3);
return 0;
}
The following output shows the result of an inspection of the function fib
.
In this case, tracepoints display all information a developer needs, including
arguments’ value, recursive flow, and variables’ size. By using tracepoints,
developers can acquire more useful information comparing with std::cout
.
(gdb) source tp.py
(gdb) tp main
Breakpoint 1 at 0x647: file a.cpp, line 12.
(gdb) tp fib
Breakpoint 2 at 0x606: file a.cpp, line 3.
(gdb) r
Starting program: /root/a.out
main @ a.cpp:12
argc(int: 1) [4]
argv(char **: 0x7fffffffe788) [8]
fib @ a.cpp:3
n(int: 3) [4]
fib @ a.cpp:3
n(int: 2) [4]
fib @ a.cpp:3
n(int: 1) [4]
fib @ a.cpp:3
n(int: 0) [4]
fib @ a.cpp:3
n(int: 1) [4]
[Inferior 1 (process 5409) exited normally]
Tracepoint 'main' Count: 1
Tracepoint 'fib' Count: 5
Profiling¶
Without inserting timestamps, profiling is still feasible through tracepoints.
By using a gdb.FinishBreakpoint
after a gdb.Breakpoint
, GDB sets a
temporary breakpoint at the return address of a frame for developers to get
the current timestamp and to calculate the time difference. Note that profiling
via GDB is not precise. Other tools, such as Linux perf or Valgrind,
provide more useful and accurate information to trace performance issues.
import gdb
import time
class EndPoint(gdb.FinishBreakpoint):
def __init__(self, breakpoint, *a, **kw):
super().__init__(*a, **kw)
self.silent = True
self.breakpoint = breakpoint
def stop(self):
# normal finish
end = time.time()
start, out = self.breakpoint.stack.pop()
diff = end - start
print(out.strip())
print(f"\tCost: {diff}")
return False
class StartPoint(gdb.Breakpoint):
def __init__(self, *a, **kw):
super().__init__(*a, **kw)
self.silent = True
self.stack = []
def stop(self):
start = time.time()
# start, end, diff
frame = gdb.newest_frame()
sym_and_line = frame.find_sal()
func = frame.function().name
filename = sym_and_line.symtab.filename
line = sym_and_line.line
block = frame.block()
args = []
for s in block:
if not s.is_argument:
continue
name = s.name
typ = s.type
val = s.value(frame)
args.append(f"{name}: {val} [{typ}]")
# format
out = ""
out += f"{func} @ {filename}:{line}\n"
for a in args:
out += f"\t{a}\n"
# append current status to a breakpoint stack
self.stack.append((start, out))
EndPoint(self, internal=True)
return False
class Profile(gdb.Command):
def __init__(self):
super().__init__("prof", gdb.COMMAND_USER)
def invoke(self, args, tty):
try:
StartPoint(args)
except Exception as e:
print(e)
Profile()
The following output shows the profiling result by setting a tracepoint at the
function fib
. It is convenient to inspect the function’s performance and
stack at the same time.
(gdb) source prof.py
(gdb) prof fib
Breakpoint 1 at 0x606: file a.cpp, line 3.
(gdb) r
Starting program: /root/a.out
fib(int) @ a.cpp:3
n: 1 [int]
Cost: 0.0007786750793457031
fib(int) @ a.cpp:3
n: 0 [int]
Cost: 0.002572298049926758
fib(int) @ a.cpp:3
n: 2 [int]
Cost: 0.008517265319824219
fib(int) @ a.cpp:3
n: 1 [int]
Cost: 0.0014069080352783203
fib(int) @ a.cpp:3
n: 3 [int]
Cost: 0.01870584487915039
Pretty Print¶
Although set print pretty on
in GDB offers a better format to inspect
variables, developers may require to parse variables’ value for readability.
Take the system call stat
as an example. While it provides useful information
to examine file attributes, the output values, such as the permission, may not
be readable for debugging. By implementing a user-defined pretty print,
developers can parse struct stat
and output information in a readable format.
import gdb
import pwd
import grp
import stat
import time
from datetime import datetime
class StatPrint:
def __init__(self, val):
self.val = val
def get_filetype(self, st_mode):
if stat.S_ISDIR(st_mode):
return "directory"
if stat.S_ISCHR(st_mode):
return "character device"
if stat.S_ISBLK(st_mode):
return "block device"
if stat.S_ISREG:
return "regular file"
if stat.S_ISFIFO(st_mode):
return "FIFO"
if stat.S_ISLNK(st_mode):
return "symbolic link"
if stat.S_ISSOCK(st_mode):
return "socket"
return "unknown"
def get_access(self, st_mode):
out = "-"
info = ("r", "w", "x")
perm = [
(stat.S_IRUSR, stat.S_IWUSR, stat.S_IXUSR),
(stat.S_IRGRP, stat.S_IRWXG, stat.S_IXGRP),
(stat.S_IROTH, stat.S_IWOTH, stat.S_IXOTH),
]
for pm in perm:
for c, p in zip(pm, info):
out += p if st_mode & c else "-"
return out
def get_time(self, st_time):
tv_sec = int(st_time["tv_sec"])
return datetime.fromtimestamp(tv_sec).isoformat()
def to_string(self):
st = self.val
st_ino = int(st["st_ino"])
st_mode = int(st["st_mode"])
st_uid = int(st["st_uid"])
st_gid = int(st["st_gid"])
st_size = int(st["st_size"])
st_blksize = int(st["st_blksize"])
st_blocks = int(st["st_blocks"])
st_atim = st["st_atim"]
st_mtim = st["st_mtim"]
st_ctim = st["st_ctim"]
out = "{\n"
out += f"Size: {st_size}\n"
out += f"Blocks: {st_blocks}\n"
out += f"IO Block: {st_blksize}\n"
out += f"Inode: {st_ino}\n"
out += f"Access: {self.get_access(st_mode)}\n"
out += f"File Type: {self.get_filetype(st_mode)}\n"
out += f"Uid: ({st_uid}/{pwd.getpwuid(st_uid).pw_name})\n"
out += f"Gid: ({st_gid}/{grp.getgrgid(st_gid).gr_name})\n"
out += f"Access: {self.get_time(st_atim)}\n"
out += f"Modify: {self.get_time(st_mtim)}\n"
out += f"Change: {self.get_time(st_ctim)}\n"
out += "}"
return out
p = gdb.printing.RegexpCollectionPrettyPrinter("sp")
p.add_printer("stat", "^stat$", StatPrint)
o = gdb.current_objfile()
gdb.printing.register_pretty_printer(o, p)
By sourcing the previous Python script, the PrettyPrinter
can recognize
struct stat
and output a readable format for developers to inspect file
attributes. Without inserting functions to parse and print struct stat
, it
is a more convenient way to acquire a better output from Python API.
(gdb) list 15
10 struct stat st;
11
12 if ((rc = stat("./a.cpp", &st)) < 0) {
13 perror("stat failed.");
14 goto end;
15 }
16
17 rc = 0;
18 end:
19 return rc;
(gdb) source st.py
(gdb) b 17
Breakpoint 1 at 0x762: file a.cpp, line 17.
(gdb) r
Starting program: /root/a.out
Breakpoint 1, main (argc=1, argv=0x7fffffffe788) at a.cpp:17
17 rc = 0;
(gdb) p st
$1 = {
Size: 298
Blocks: 8
IO Block: 4096
Inode: 1322071
Access: -rw-rw-r--
File Type: regular file
Uid: (0/root)
Gid: (0/root)
Access: 2019-12-28T15:53:17
Modify: 2019-12-28T15:53:01
Change: 2019-12-28T15:53:01
}
Note that developers can disable a user-defined pretty-print via the command
disable
. For example, the previous Python script registers a pretty printer
under the global pretty-printers. By calling disable pretty-print
, the
printer sp
will be disabled.
(gdb) disable pretty-print global sp
1 printer disabled
1 of 2 printers enabled
(gdb) i pretty-print
global pretty-printers:
builtin
mpx_bound128
sp [disabled]
stat
Additionally, developers can exclude a printer in the current GDB debugging
session if it is no longer required. The following snippet shows how to delete
the sp
printer through gdb.pretty_printers.remove
.
(gdb) python
>import gdb
>for p in gdb.pretty_printers:
> if p.name == "sp":
> gdb.pretty_printers.remove(p)
>end
(gdb) i pretty-print
global pretty-printers:
builtin
mpx_bound128
Conclusion¶
Integrating Python interpreter into GDB offers many flexible ways to troubleshoot issues. While many integrated development environments (IDEs) may embed GDB to debug visually, GDB allows developers to implement their commands and parse variables’ output at runtime. By using debugging scripts, developers can monitor and record necessary information without modifying their code. Honestly, inserting or enabling debugging code blocks may change a program’s behaviors, and developers should get rid of this bad habit. Also, when a problem is reproduced, GDB can attach that process and examine its status without stopping it. Obviously, debugging via GDB is inevitable if a challenging issue emerges. Thanks to integrating Python into GDB, developing a script to troubleshoot becomes more accessible that leads to developers establishing their debugging methods diversely.